Geometría Mundurucú. Jorge Laborda

Es innegable que el filósofo y matemático griego Euclides no estudió geometría euclidea en la academia de Alejandría, ciudad donde nació y vivió: Nadie había inventado este tipo de geometría aún. Los cinco axiomas geométricos de Euclides, recogidos en su libro “Elementos”, le permitieron a él y a otros matemáticos que siguieron sus pasos construir el sólido edificio de la geometría que tan útil ha resultado para el desarrollo de la ciencia.

No obstante, un misterio que no ha sido resuelto todavía es el de la procedencia de los axiomas geométricos que Euclides postuló. Recordemos que un axioma es una verdad evidente en sí misma que no necesita demostración para sustentarla. Por ejemplo, uno de los axiomas de Euclides afirma que dados dos puntos en el espacio, por ellos solo puede pasar una única línea recta. Esto parece evidente sin necesidad de demostración, pero ¿por qué es evidente? En otras palabras: ¿Por qué nuestra mente acepta ese axioma como una verdad que no es necesario probar?


Leer completo y escuchar audio.



No hay comentarios:

Publicar un comentario