Premios Nobel – Física 1911 (Wilhelm Wien)

Pedro Gómez-Esteban.
En la serie sobre los Premios Nobel recorremos juntos estos galardones desde su nacimiento en 1901 hasta la actualidad en las ramas de Física y de Química. En cada artículo intentamos dar una idea de la relevancia del descubrimiento en cuestión dentro de su contexto histórico, algunos datos sobre los científicos involucrados y, de paso, disfrutamos juntos parloteando sobre la ciencia relacionada con el premio de que se trate.
En la última entrega de la serie hablamos sobre el Premio Nobel de Química de 1910, obtenido por Otto Wallach por sus investigaciones sobre los compuestos alicíclicos. Hoy disfrutaremos del galardón de Física de 1911, otorgado a Wilhelm Wien, en palabras de la Real Academia Sueca de las Ciencias,
Por sus descubrimientos sobre las leyes que gobiernan la radiación térmica.
Como suele suceder, es difícil entender la importancia tremenda de los descubrimientos de Wien a partir de esta breve y vaga descripción. De modo que, como también suele suceder, para poder comprenderla tenemos antes que retroceder unas cuantas décadas en el tiempo, al comienzo de nuestra comprensión de la radiación térmica y su relación con la temperatura.
Además, si has leído Cuántica sin fórmulas, hoy recorreremos algunos de los acontecimientos más interesantes que dieron lugar a la hipótesis de Planck en más detalle de lo que pudimos hacerlo en aquella serie. En cierto sentido, como veremos, el Nobel de hoy es un premio a uno de los precursores de la cuántica, aunque él no fuera consciente de ello. ¿Listo para viajar al pasado?
El siglo XIX supuso el nacimiento de la termodinámica moderna, sobre todo a partir de la tercera década del siglo. Fue entonces cuando establecimos las bases de nuestro conocimiento sobre la temperatura, la energía térmica, las transferencias de energía debidas a la diferencia de temperatura –es decir, el calor– y cosas parecidas.
Con tan sólo un par de décadas de retraso sobre el desarrollo de la termodinámica haría lo propio la teoría electromagnética de la luz, de mano de James Clerk Maxwell. Era inevitable unir ambas para establecer las bases de la emisión de radiación térmica por parte de los cuerpos calientes y tener así leyes precisas con las que estudiar la radiación absorbida y emitida por los diferentes cuerpos del Universo, pues los cuerpos calientes emiten radiación electromagnética, luego ambas teorías deben necesariamente estar relacionadas.
A primera vista, debería haber sido algo sencillo. Al fin y al cabo, de acuerdo con la termodinámica, un cuerpo está tanto más caliente cuanto más rápido vibran las partículas que lo forman; por otro lado, de acuerdo con las ecuaciones de Maxwell, cuanto mayor es la aceleración que sufre una carga eléctrica, mayor es la perturbación del campo electromagnético a su alrededor. Todo parece encajar, ¿no? Un cuerpo caliente tiene partículas que vibran deprisa y, por tanto, emite mayor cantidad de radiación. Pero, como tantas otras veces, el diablo está en los detalles: ¿exactamente cuánta radiación emitía un cuerpo dependiendo de su temperatura? ¿cambiaba el tipo de radiación con la temperatura, o sólo la intensidad de la radiación emitida? ¿qué características de un cuerpo determinaban la cantidad de radiación emitida, aparte de la temperatura?
Algunas de estas preguntas eran de fácil respuesta. Ya hemos hablado, al hacerlo de Wilhelm Röntgen, de los rayos caloríficos presentados por William Herschel a la Royal Society en 1800; algunas características de la radiación térmica eran conocidas de manera cualitativa ya desde principios del XIX, aunque no las razones últimas de esas características, desde luego –pues es imposible entenderlas sin una termodinámica y un electromagnetismo maduros–.
No hace falta ser Maxwell, por ejemplo, para darse cuenta de que cuanto más caliente está un cuerpo, más cantidad de radiación emite. Además, la frecuencia de esa radiación –dicho en plata, el color, si es luz– cambia con la temperatura. Un cuerpo incandescente puede brillar con un rojo profundo, pero si se calienta aún más, ese color va cambiado hacia el azul. De modo que sí, tanto la cantidad de radiación como su frecuencia cambian al hacerlo la temperatura — perocuantificar esas relaciones no es tan sencillo.
Tampoco hace falta ser Maxwell para darse cuenta que lo que acabo de decir del color es una simplificación tremenda: un cuerpo caliente no emite radiación de un solo color, sino de muchos. Al calentarse más, lo que sucede es que cambia la cantidad de radiación emitida de cada frecuencia, es decir, de cada color. Es como si la radiación emitida fuese la suma de muchas radiaciones de distintas longitudes de onda y, al cambiar la temperatura, cambia la cantidad de radiación emitida de cada frecuencia. Pero ¿cuánto? ¿cómo?
Finalmente, los distintos cuerpos emiten una cantidad de radiación diferente incluso estando a la misma temperatura. Una piedra blanca y otra negra a la misma temperatura, por ejemplo, no emiten la misma cantidad de radiación. ¿Hay algo además del color que tenga que ver con esto? ¿qué relación hay entre cuerpos de distintos colores y, una vez más, cómo es posible cuantificarlo?
Como puedes ver, se trata de muchas preguntas cuyas respuestas cualitativas teníamos más o menos claras, pero nos faltaba por un lado cuantificarlas con leyes como Dios manda, y por otro saber por qué las cosas se comportaban así. Afortunadamente, un buen puñado de genios decimonónicos llegaría al rescate.

No hay comentarios:

Publicar un comentario